

Shark|NINJA

EU DECLARATION OF CONFORMITY

In accordance with EN ISO/IEC 17050-1:2010

Declaration Number:	20200505-BNXXX R1
Type of Product:	Motorized Blender
Market Name:	Ninja Blender
Models Covered:	BNxxx * – Any value A-Z or 0-9 covering different models in the family and factory codes X – two-digit country or region code
Manufacture:	SharkNinja Operating LLC 89 A Street, Suite 100 Needham, MA 02494
Trading Company:	SharkNinja Europe Ltd. 3150 Century Way Thorpe Park, Leeds, LS15 8ZB, United Kingdom SharkNinja Germany GmbH, c/o Regus Management GmbH Excellent Business Center 10 +11/Stock Westhafenplatz 1 60327 Frankfurt am Main, Germany
Manufacturing Location:	China
CE mark was first affixed:	2020

We hereby declare that the product identified above meets the requirements of the following EU Directives and therefore qualifies for free movement within markets comprising the European Union (EU) and the European Economic Area (EEA). This declaration is issued under sole responsibility of the manufacturer.

Shark|NINJA

Applicable Directives:	2006/42/EU – Machinery Directive 2014/35/EU – Low Voltage Directive 2014/30/EU – Machinery Directive 2011/65/EU – RoHS Directive
Secondary Directives:	2012/95/EC – WEEE Directive 1907/2006/EC – REACH Directive 850/2004/EEC – POP Directive 2004/12/EC EU – Packaging Directive CM/RES (2013) 9, EU – EU Metals and Alloys that Contact Food 519/2012/EU – SCCP Directive
National Directives:	Regulation (EC) No 1935/2004 Regulation (EC) No 2023/2006 Regulation (EU) No 10/2011 Italian Decree DGCCRF Notice 2004-64 French Law 201 1442 (10/2011/EU) Decree 2007-766 German Food Art of Daily Use and Feed Code (LFGB) Sect 30+31
Standard conformity is declared to:	IEC 60335-1:2010/AMD1:2013/AMD2:2016 IEC 60335-2-14:2016/AMD1:2019 EN 61000-3-2:2014, EN 61000-3-3:2013, EN 62233:2008 EN 1186-1, 2, 3, 8, 9, 14:2002 EN 50564:2011, EN 50581:2012 EN55014-1:2006, EN 55014-2:1997 EN 60335-1:2012/A11:2014/A13:2017/A14:2019 EN 60335-2-14:2006/A1:2008

The above declaration is only valid if the product is installed and operated per the instruction defined in the product information supplied.

Signed for and on behalf of:

SharkNinja Operating LLC
Needham, Massachusetts, USA

Thomas R. Siwek
Vice President, Product Safety and Compliance
2020/05/05

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Celanese International 1140L6 [PPS] 40% GF, Grey																																																				
SharkNinja Models:	BLxxx, BNxxx																																																				
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																																				
Plastic-Overall Migration: Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-2:2002 olive oil by total immersion method.	<table border="1"><thead><tr><th>Simulant Used</th><th>Test Condition</th><th>Result (mg/dm²)</th><th>Reporting Limit (mg/dm²)</th><th>Permissible Limit (mg/dm²)</th></tr><tr><th></th><th></th><th>1</th><th></th><th></th></tr></thead><tbody><tr><td>10% Ethanol (V/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>3% Acetic Acid (W/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Rectified Olive Oil</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Comment</td><td>--</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note : 1. mg/dm² = milligram per square decimeter 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.</p>					Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)			1			10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	Rectified Olive Oil	2 hours at 70°C	ND	3.0	10	Comment	--	PASS	--	--																		
Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																																	
		1																																																			
10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																																	
3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																																	
Rectified Olive Oil	2 hours at 70°C	ND	3.0	10																																																	
Comment	--	PASS	--	--																																																	
Plastic-Migration of Heavy Metals: Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40°C for 2 hours	<table border="1"><thead><tr><th>Test Item</th><th>Result (mg/kg)</th><th>Reporting Limit (mg/kg)</th><th>Permissible Limit (mg/kg)</th></tr><tr><th></th><th>1</th><th></th><th></th></tr></thead><tbody><tr><td>Specific Migration of Aluminium</td><td>ND</td><td>0.1</td><td>1</td></tr><tr><td>Specific Migration of Barium</td><td>ND</td><td>0.25</td><td>1</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>0.01</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>0.25</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>0.25</td><td>48</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>0.5</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>0.25</td><td>0.6</td></tr><tr><td>Specific Migration of Nickel</td><td>ND</td><td>0.01</td><td>0.02</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>0.5</td><td>25</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.</p>					Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)		1			Specific Migration of Aluminium	ND	0.1	1	Specific Migration of Barium	ND	0.25	1	Specific Migration of Cobalt	ND	0.01	0.05	Specific Migration of Copper	ND	0.25	5	Specific Migration of Iron	ND	0.25	48	Specific Migration of Lithium	ND	0.5	0.6	Specific Migration of Manganese	ND	0.25	0.6	Specific Migration of Nickel	ND	0.01	0.02	Specific Migration of Zinc	ND	0.5	25	Comment	PASS	--	--
Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																																		
	1																																																				
Specific Migration of Aluminium	ND	0.1	1																																																		
Specific Migration of Barium	ND	0.25	1																																																		
Specific Migration of Cobalt	ND	0.01	0.05																																																		
Specific Migration of Copper	ND	0.25	5																																																		
Specific Migration of Iron	ND	0.25	48																																																		
Specific Migration of Lithium	ND	0.5	0.6																																																		
Specific Migration of Manganese	ND	0.25	0.6																																																		
Specific Migration of Nickel	ND	0.01	0.02																																																		
Specific Migration of Zinc	ND	0.5	25																																																		
Comment	PASS	--	--																																																		

CE

Shark | NINJA

Types of Food Contact	Fatty foods, Acidic foods, Aqueous foods, Alcoholic foods
Lab Reference	SGS HKGEC1900698007

Shark NINJA

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Chi Mei Corp PN117 [SAN]				
SharkNinja Models:	BL6xx, BNxx				
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011				
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-14 :2002 substitute test.	Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)
			1		
	10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10
	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10
	Fatty food substitute				
	95% Ethanol	2 hours at 60°C	5.9	3.0	10
	Isooctane	0.5 hour at 40°C	ND	3.0	10
	Comment	--	PASS	--	--
	Note : 1. mg/dm ² = milligram per square decimeter 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.				
Plastic-Migration of Heavy Metals Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40°C for 2 hours	Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	
		1			
	Specific Migration of Barium	ND	0.25	1	
	Specific Migration of Cobalt	ND	0.01	0.05	
	Specific Migration of Copper	ND	0.25	5	
	Specific Migration of Iron	ND	0.26	48	
	Specific Migration of Lithium	ND	0.5	0.6	
	Specific Migration of Manganese	ND	0.25	0.6	
	Specific Migration of Zinc	ND	0.5	25	
	Comment	PASS	--	--	
	Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.				

Shark NINJA

SAN - Specific migration of Acrylonitrile

Method: With reference to EN 13130-1:2004. Analysis was performed by SPME-GC-MS.

Simulant Used: 3% acetic acid (WN) in aqueous solution

Test Condition: 40°C for 2 hours (1" Migration)

Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)
Specific migration of Acrylonitrile	1	0.01	0.01
Comment	PASS	-	--

Note:

1. mg/kg = milligram per kilogram of foodstuff in contact with
2. °C = degree Celsius
3. ND = Not Detected
4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.

Types of Food Contact

Fatty foods, Alcoholic foods, Acidic foods, Aqueous foods

Lab Reference

SGS HKGEC 16-008558-06

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Eastman Tritan TX1001 [PET], Transparent																																												
BLxx	BLxxx, BNxxx,																																												
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																												
Plastic-Overall Migration: Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-2:2002 olive oil by total immersion method.	<table border="1"><thead><tr><th>Simulant Used</th><th>Test Condition</th><th>Result (mg/dm²)</th><th>Reporting Limit (mg/dm²)</th><th>Permissible Limit (mg/dm²)</th></tr><tr><th></th><th></th><th>1</th><th></th><th></th></tr></thead><tbody><tr><td>10% Ethanol (V/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>3% Acetic Acid (W/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Rectified Olive Oil</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Comment</td><td>--</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note : 1. mg/dm² = milligram per square decimeter 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.</p>					Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)			1			10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	Rectified Olive Oil	2 hours at 70°C	ND	3.0	10	Comment	--	PASS	--	--										
Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																									
		1																																											
10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																									
3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																									
Rectified Olive Oil	2 hours at 70°C	ND	3.0	10																																									
Comment	--	PASS	--	--																																									
Plastic-Migration of Heavy Metals: Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40°C for 2 hours	<table border="1"><thead><tr><th>Test Item</th><th>Result (mg/kg)</th><th>Reporting Limit (mg/kg)</th><th>Permissible Limit (mg/kg)</th></tr><tr><th></th><th>1</th><th></th><th></th></tr></thead><tbody><tr><td>Specific Migration of Barium</td><td>ND</td><td>0.25</td><td>1</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>0.01</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>0.25</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>0.25</td><td>48</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>0.5</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>0.25</td><td>0.6</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>0.5</td><td>25</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.</p>					Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)		1			Specific Migration of Barium	ND	0.25	1	Specific Migration of Cobalt	ND	0.01	0.05	Specific Migration of Copper	ND	0.25	5	Specific Migration of Iron	ND	0.25	48	Specific Migration of Lithium	ND	0.5	0.6	Specific Migration of Manganese	ND	0.25	0.6	Specific Migration of Zinc	ND	0.5	25	Comment	PASS	--	--
Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																										
	1																																												
Specific Migration of Barium	ND	0.25	1																																										
Specific Migration of Cobalt	ND	0.01	0.05																																										
Specific Migration of Copper	ND	0.25	5																																										
Specific Migration of Iron	ND	0.25	48																																										
Specific Migration of Lithium	ND	0.5	0.6																																										
Specific Migration of Manganese	ND	0.25	0.6																																										
Specific Migration of Zinc	ND	0.5	25																																										
Comment	PASS	--	--																																										

CE

Shark | NINJA

Types of Food Contact	Fatty foods, Acidic foods, Aqueous foods, Alcoholic foods
Lab Reference	SGS HKGEC1501042806

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.

Shark NINJA

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	EMS-CHEMIE AG BG-30S FA [PA] 30% GF, Black																																																																																																																																																		
SharkNinja Models:	BLxxx, BNxxx																																																																																																																																																		
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																																																																																																																																		
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods EN 1186-3:2002 aqueous food simulants by total immersion method.	<table border="1"><thead><tr><th rowspan="2">Simulant Used</th><th rowspan="2">Test Condition</th><th colspan="3">Result (mg/dm²)</th><th rowspan="2">Reporting Limit (mg/dm²)</th><th rowspan="2">Permissible Limit (mg/dm²)</th></tr><tr><th>1st migration</th><th>2nd migration</th><th>3rd migration</th></tr></thead><tbody><tr><td>Fatty food substitute</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>95% Ethanol</td><td>2 hours at 60 °C</td><td>ND</td><td>ND</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Isooctane</td><td>0.5 hour at 40 °C</td><td>ND</td><td>ND</td><td>ND</td><td>3.0</td><td>10</td></tr></tbody></table>	Simulant Used	Test Condition	Result (mg/dm ²)			Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)	1 st migration	2 nd migration	3 rd migration	Fatty food substitute						95% Ethanol	2 hours at 60 °C	ND	ND	ND	3.0	10	Isooctane	0.5 hour at 40 °C	ND	ND	ND	3.0	10	Result (mg/dm²)			Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																																																																																															
Simulant Used	Test Condition			Result (mg/dm ²)					Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																																																																																																																									
		1 st migration	2 nd migration	3 rd migration																																																																																																																																															
Fatty food substitute																																																																																																																																																			
95% Ethanol	2 hours at 60 °C	ND	ND	ND	3.0	10																																																																																																																																													
Isooctane	0.5 hour at 40 °C	ND	ND	ND	3.0	10																																																																																																																																													
Stability+		1 st migration	2 nd migration	3 rd migration																																																																																																																																															
		--	--	--	Yes	--																																																																																																																																													
Overall Comment		--	--	--	PASS	--																																																																																																																																													
Note : 1. mg/dm ² = milligram per square decimeter 2. °C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.																																																																																																																																																			
Plastic - Specific Migration of Heavy Metals Method: With reference to EN 13130-1 :2004. Analysis was performed by ICP-MS / ICP OES. Simulant Used: 3% acetic acid (w/v) in aqueous solution Test Condition: 40°C for 2 hours	<table border="1"><thead><tr><th rowspan="2">Test Item</th><th colspan="3">Result (mg/kg)</th><th rowspan="2">Reporting Limit (mg/kg)</th><th rowspan="2">Permissible Limit (mg/kg)</th></tr><tr><th>1</th><th>2nd</th><th>3rd</th></tr></thead><tbody><tr><td>Specific Migration of Aluminium</td><td>ND</td><td>ND</td><td>ND</td><td>0.5</td><td>1</td></tr><tr><td>Specific Migration of Antimony</td><td>ND</td><td>ND</td><td>ND</td><td>0.02</td><td>0.04</td></tr><tr><td>Specific Migration of Arsenic</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Barium</td><td>ND</td><td>ND</td><td>ND</td><td>0.5</td><td>1</td></tr><tr><td>Specific Migration of Cadmium</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Chromium</td><td>ND</td><td>ND</td><td>ND</td><td>0.05</td><td>ND</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>ND</td><td>ND</td><td>1</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>ND</td><td>ND</td><td>0.5</td><td>48</td></tr><tr><td>Specific Migration of Lead</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>ND</td><td>ND</td><td>0.2</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>ND</td><td>ND</td><td>0.2</td><td>0.6</td></tr><tr><td>Specific Migration of Mercury</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Nickel</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>0.02</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>ND</td><td>ND</td><td>0.1</td><td>5</td></tr><tr><td>Specific Migration of Terbium</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Europium</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Gadolinium</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Lanthanum</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>sum of all lanthanide substances (Europium, Gadolinium, Lanthanum and Terbium)</td><td>ND</td><td>ND</td><td>ND</td><td>--</td><td>0.05</td></tr><tr><td>Stability+</td><td>--</td><td>--</td><td>--</td><td>Yes</td><td>--</td></tr><tr><td>Overall Comment</td><td>--</td><td>--</td><td>--</td><td>PASS</td><td>--</td></tr></tbody></table>	Test Item	Result (mg/kg)			Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	1	2 nd	3 rd	Specific Migration of Aluminium	ND	ND	ND	0.5	1	Specific Migration of Antimony	ND	ND	ND	0.02	0.04	Specific Migration of Arsenic	ND	ND	ND	0.01	ND	Specific Migration of Barium	ND	ND	ND	0.5	1	Specific Migration of Cadmium	ND	ND	ND	0.01	ND	Specific Migration of Chromium	ND	ND	ND	0.05	ND	Specific Migration of Cobalt	ND	ND	ND	0.025	0.05	Specific Migration of Copper	ND	ND	ND	1	5	Specific Migration of Iron	ND	ND	ND	0.5	48	Specific Migration of Lead	ND	ND	ND	0.01	ND	Specific Migration of Lithium	ND	ND	ND	0.2	0.6	Specific Migration of Manganese	ND	ND	ND	0.2	0.6	Specific Migration of Mercury	ND	ND	ND	0.01	ND	Specific Migration of Nickel	ND	ND	ND	0.01	0.02	Specific Migration of Zinc	ND	ND	ND	0.1	5	Specific Migration of Terbium	ND	ND	ND	0.025	0.05	Specific Migration of Europium	ND	ND	ND	0.025	0.05	Specific Migration of Gadolinium	ND	ND	ND	0.025	0.05	Specific Migration of Lanthanum	ND	ND	ND	0.025	0.05	sum of all lanthanide substances (Europium, Gadolinium, Lanthanum and Terbium)	ND	ND	ND	--	0.05	Stability+	--	--	--	Yes	--	Overall Comment	--	--	--	PASS	--	Result (mg/kg)				
Test Item	Result (mg/kg)			Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																																																																																																																														
	1	2 nd	3 rd																																																																																																																																																
Specific Migration of Aluminium	ND	ND	ND	0.5	1																																																																																																																																														
Specific Migration of Antimony	ND	ND	ND	0.02	0.04																																																																																																																																														
Specific Migration of Arsenic	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Barium	ND	ND	ND	0.5	1																																																																																																																																														
Specific Migration of Cadmium	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Chromium	ND	ND	ND	0.05	ND																																																																																																																																														
Specific Migration of Cobalt	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Copper	ND	ND	ND	1	5																																																																																																																																														
Specific Migration of Iron	ND	ND	ND	0.5	48																																																																																																																																														
Specific Migration of Lead	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Lithium	ND	ND	ND	0.2	0.6																																																																																																																																														
Specific Migration of Manganese	ND	ND	ND	0.2	0.6																																																																																																																																														
Specific Migration of Mercury	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Nickel	ND	ND	ND	0.01	0.02																																																																																																																																														
Specific Migration of Zinc	ND	ND	ND	0.1	5																																																																																																																																														
Specific Migration of Terbium	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Europium	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Gadolinium	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Lanthanum	ND	ND	ND	0.025	0.05																																																																																																																																														
sum of all lanthanide substances (Europium, Gadolinium, Lanthanum and Terbium)	ND	ND	ND	--	0.05																																																																																																																																														
Stability+	--	--	--	Yes	--																																																																																																																																														
Overall Comment	--	--	--	PASS	--																																																																																																																																														
Note 1. mg/kg ; milligram per kilogram of foodstuff in contact with 2. °C ; degree Celsius 3. ND; Not Detected (< Reporting limit)		1 st	2 nd	3 rd																																																																																																																																															
		--	--	--	Yes	--																																																																																																																																													
		--	--	--	PASS	--																																																																																																																																													
		Note 1. mg/kg ; milligram per kilogram of foodstuff in contact with 2. °C ; degree Celsius 3. ND; Not Detected (< Reporting limit)																																																																																																																																																	
Material Covered	EMS-CHEMIE AG BG-30S FA [PA] 30% GF, Black																																																																																																																																																		
SharkNinja Models:	BLxxx, BNxxx																																																																																																																																																		
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																																																																																																																																		
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods EN 1186-3:2002 aqueous food simulants by total immersion method.	<table border="1"><thead><tr><th rowspan="2">Simulant Used</th><th rowspan="2">Test Condition</th><th colspan="3">Result (mg/dm²)</th><th rowspan="2">Reporting Limit (mg/dm²)</th><th rowspan="2">Permissible Limit (mg/dm²)</th></tr><tr><th>1st migration</th><th>2nd migration</th><th>3rd migration</th></tr></thead><tbody><tr><td>Fatty food substitute</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>95% Ethanol</td><td>2 hours at 60 °C</td><td>ND</td><td>ND</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Isooctane</td><td>0.5 hour at 40 °C</td><td>ND</td><td>ND</td><td>ND</td><td>3.0</td><td>10</td></tr></tbody></table>	Simulant Used	Test Condition	Result (mg/dm ²)			Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)	1 st migration	2 nd migration	3 rd migration	Fatty food substitute						95% Ethanol	2 hours at 60 °C	ND	ND	ND	3.0	10	Isooctane	0.5 hour at 40 °C	ND	ND	ND	3.0	10	Result (mg/dm²)			Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																																																																																															
Simulant Used	Test Condition			Result (mg/dm ²)					Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																																																																																																																									
		1 st migration	2 nd migration	3 rd migration																																																																																																																																															
Fatty food substitute																																																																																																																																																			
95% Ethanol	2 hours at 60 °C	ND	ND	ND	3.0	10																																																																																																																																													
Isooctane	0.5 hour at 40 °C	ND	ND	ND	3.0	10																																																																																																																																													
Stability+		1 st migration	2 nd migration	3 rd migration																																																																																																																																															
		--	--	--	Yes	--																																																																																																																																													
Overall Comment		--	--	--	PASS	--																																																																																																																																													
Note : 1. mg/dm ² = milligram per square decimeter 2. °C = degree Celsius 3. ND = Not Detected																																																																																																																																																			
Plastic - Specific Migration of Heavy Metals Method: With reference to EN 13130-1 :2004. Analysis was performed by ICP-MS / ICP OES. Simulant Used: 3% acetic acid (w/v) in aqueous solution Test Condition: 40°C for 2 hours	<table border="1"><thead><tr><th rowspan="2">Test Item</th><th colspan="3">Result (mg/kg)</th><th rowspan="2">Reporting Limit (mg/kg)</th><th rowspan="2">Permissible Limit (mg/kg)</th></tr><tr><th>1</th><th>2nd</th><th>3rd</th></tr></thead><tbody><tr><td>Specific Migration of Aluminium</td><td>ND</td><td>ND</td><td>ND</td><td>0.5</td><td>1</td></tr><tr><td>Specific Migration of Antimony</td><td>ND</td><td>ND</td><td>ND</td><td>0.02</td><td>0.04</td></tr><tr><td>Specific Migration of Arsenic</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Barium</td><td>ND</td><td>ND</td><td>ND</td><td>0.5</td><td>1</td></tr><tr><td>Specific Migration of Cadmium</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Chromium</td><td>ND</td><td>ND</td><td>ND</td><td>0.05</td><td>ND</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>ND</td><td>ND</td><td>1</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>ND</td><td>ND</td><td>0.5</td><td>48</td></tr><tr><td>Specific Migration of Lead</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>ND</td><td>ND</td><td>0.2</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>ND</td><td>ND</td><td>0.2</td><td>0.6</td></tr><tr><td>Specific Migration of Mercury</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>ND</td></tr><tr><td>Specific Migration of Nickel</td><td>ND</td><td>ND</td><td>ND</td><td>0.01</td><td>0.02</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>ND</td><td>ND</td><td>0.1</td><td>5</td></tr><tr><td>Specific Migration of Terbium</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Europium</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Gadolinium</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>Specific Migration of Lanthanum</td><td>ND</td><td>ND</td><td>ND</td><td>0.025</td><td>0.05</td></tr><tr><td>sum of all lanthanide substances (Europium, Gadolinium, Lanthanum and Terbium)</td><td>ND</td><td>ND</td><td>ND</td><td>--</td><td>0.05</td></tr><tr><td>Stability+</td><td>--</td><td>--</td><td>--</td><td>Yes</td><td>--</td></tr><tr><td>Overall Comment</td><td>--</td><td>--</td><td>--</td><td>PASS</td><td>--</td></tr></tbody></table>	Test Item	Result (mg/kg)			Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	1	2 nd	3 rd	Specific Migration of Aluminium	ND	ND	ND	0.5	1	Specific Migration of Antimony	ND	ND	ND	0.02	0.04	Specific Migration of Arsenic	ND	ND	ND	0.01	ND	Specific Migration of Barium	ND	ND	ND	0.5	1	Specific Migration of Cadmium	ND	ND	ND	0.01	ND	Specific Migration of Chromium	ND	ND	ND	0.05	ND	Specific Migration of Cobalt	ND	ND	ND	0.025	0.05	Specific Migration of Copper	ND	ND	ND	1	5	Specific Migration of Iron	ND	ND	ND	0.5	48	Specific Migration of Lead	ND	ND	ND	0.01	ND	Specific Migration of Lithium	ND	ND	ND	0.2	0.6	Specific Migration of Manganese	ND	ND	ND	0.2	0.6	Specific Migration of Mercury	ND	ND	ND	0.01	ND	Specific Migration of Nickel	ND	ND	ND	0.01	0.02	Specific Migration of Zinc	ND	ND	ND	0.1	5	Specific Migration of Terbium	ND	ND	ND	0.025	0.05	Specific Migration of Europium	ND	ND	ND	0.025	0.05	Specific Migration of Gadolinium	ND	ND	ND	0.025	0.05	Specific Migration of Lanthanum	ND	ND	ND	0.025	0.05	sum of all lanthanide substances (Europium, Gadolinium, Lanthanum and Terbium)	ND	ND	ND	--	0.05	Stability+	--	--	--	Yes	--	Overall Comment	--	--	--	PASS	--	Result (mg/kg)				
Test Item	Result (mg/kg)			Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																																																																																																																														
	1	2 nd	3 rd																																																																																																																																																
Specific Migration of Aluminium	ND	ND	ND	0.5	1																																																																																																																																														
Specific Migration of Antimony	ND	ND	ND	0.02	0.04																																																																																																																																														
Specific Migration of Arsenic	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Barium	ND	ND	ND	0.5	1																																																																																																																																														
Specific Migration of Cadmium	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Chromium	ND	ND	ND	0.05	ND																																																																																																																																														
Specific Migration of Cobalt	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Copper	ND	ND	ND	1	5																																																																																																																																														
Specific Migration of Iron	ND	ND	ND	0.5	48																																																																																																																																														
Specific Migration of Lead	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Lithium	ND	ND	ND	0.2	0.6																																																																																																																																														
Specific Migration of Manganese	ND	ND	ND	0.2	0.6																																																																																																																																														
Specific Migration of Mercury	ND	ND	ND	0.01	ND																																																																																																																																														
Specific Migration of Nickel	ND	ND	ND	0.01	0.02																																																																																																																																														
Specific Migration of Zinc	ND	ND	ND	0.1	5																																																																																																																																														
Specific Migration of Terbium	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Europium	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Gadolinium	ND	ND	ND	0.025	0.05																																																																																																																																														
Specific Migration of Lanthanum	ND	ND	ND	0.025	0.05																																																																																																																																														
sum of all lanthanide substances (Europium, Gadolinium, Lanthanum and Terbium)	ND	ND	ND	--	0.05																																																																																																																																														
Stability+	--	--	--	Yes	--																																																																																																																																														
Overall Comment	--	--	--	PASS	--																																																																																																																																														
1 st	2 nd	3 rd																																																																																																																																																	
--	--	--	Yes	--																																																																																																																																															
--	--	--	PASS	--																																																																																																																																															
Note 1. mg/kg ; milligram per kilogram of foodstuff in contact with 2. °C ; degree Celsius 3. ND; Not Detected (< Reporting limit)																																																																																																																																																			

Nylon - Specific migration of Primary Aromatic Amine

Method: With reference to EN13130-1 :2004 and EU JRC guideline EUR 24815 EN 2011. Analysis was performed by LC-MSMS. Simulant Used: 3% acetic acid (w/v) in aqueous solution Test Condition: 70 °C for 2 hours

Test Item	Result (mg/kg)			Detection Limit (mg/kg)	Permissible Limit (mg/kg)		
	1						
	1 st	2 nd	3 rd				
1. Biphenyl-4-ylamine; 4-aminobiphenyl; xenyldiamine	ND	ND	ND	0.002	0.002		
2. Benzidine	ND	ND	ND	0.002	0.002		
3. 4-chloro-o-toluidine	ND	ND	ND	0.002	0.002		
4. 2-naphthylamine	ND	ND	ND	0.002	0.002		
5. o-aminoazotoluene; 4-amino-2',3-dimethylazobenzene; 4-o-tolylazo-o-toluidine	ND	ND	ND	0.002	0.002		
6. 5-nitro-o-toluidine	ND	ND	ND	0.002	0.002		
7. 4-chloroaniline	ND	ND	ND	0.002	0.002		
8. 4-methoxy-m-phenylenediamine	ND	ND	ND	0.002	0.002		
9. 4,4'-methylenedianiline; 4,4'-diaminodiphenylmethane	ND	ND	ND	0.002	0.002		
10. 3,3'-dichlorobenzidine; 3,3'-dichlorobiphenyl-4,4'-ylenediamine	ND	ND	ND	0.002	0.002		
11. 3,3'-dimethoxybenzidine; o-dianisidine	ND	ND	ND	0.002	0.002		
12. 3,3'-dimethylbenzidine; 4,4'-bi-o-toluidine	ND	ND	ND	0.002	0.002		
13. 4,4'-methylenedi-o-toluidine	ND	ND	ND	0.002	0.002		
14. 6-methoxy-m-toluidine; p-cresidine	ND	ND	ND	0.002	0.002		
15. 4,4'-methylen-bis-(2-chloro-aniline);2,2'-dichloro-4,4'-methylene-dianiline	ND	ND	ND	0.002	0.002		
16. 4,4'-oxydianiline; 4,4'-Diaminodiphenyl ether	ND	ND	ND	0.002	0.002		
17. 4,4'-thiodianiline	ND	ND	ND	0.002	0.002		
18. o-Toluidine; 2-aminotoluene	ND	ND	ND	0.002	0.002		
19. 4-methyl-m-phenylenediamine; 2,4-Toluenediamine (2,4-TDA)	ND	ND	ND	0.002	0.002		
20. 2,4,5-trimethylaniline	ND	ND	ND	0.002	0.002		
21. o-anisidine; 2-methoxyaniline	ND	ND	ND	0.002	0.002		
22. 4-amino azobenzene	ND	ND	ND	0.002	0.002		
23. 1,3-phenylenediamine	ND	ND	ND	0.002	0.002		
Stability+	--	--	Yes				
Overall Comment	--	--	PASS	--			
24. Aniline	ND	ND	ND	0.002			
25. m-Toluidine	ND	ND	ND	0.002			
26. p-Toluidine	ND	ND	ND	0.002			
27. 2,6-Toluenediamine (2,6-TDA)	ND	ND	ND	0.002			
28. m-Anisidine	ND	ND	ND	0.002			
29. 3-Chloroaniline	ND	ND	ND	0.010			
30. p-Phenylenediamine (p-PDA); 1,4-Phenylenediamine	ND	ND	ND	0.002			
31. 1,2-Phenylenediamine	ND	ND	ND	0.002			
32. 2,6-Dimethylaniline (2,6-DMA)	ND	ND	ND	0.002			
33. 2,4-Dimethylaniline (2,4-DMA)	ND	ND	ND	0.002			
34. 1,5-Diaminonaphthalene	ND	ND	ND	0.002			
35. 4-Ethoxyaniline	ND	ND	ND	0.002			
36. 3-Amino-4-methoxybenzaniide	ND	ND	ND	0.002			
37. 2-Methoxy-4-nitroaniline	ND	ND	ND	0.005			
38. 5-Amino-6-methylbenzimidazolone	ND	ND	ND	0.002			
39. 4-Aminobenzamide	ND	ND	ND	0.002			
40. 3-Amino-4-methylbenzamide	ND	ND	ND	0.002			
41. 2-Chloraniline	ND	ND	ND	0.010			
42. o-Phenetidine (2-Ethoxyaniline)	ND	ND	ND	0.005			
43. 5-Chloro-2-methylaniline	ND	ND	ND	0.005			
44. 1,3-Diiminoisoindoline	ND	ND	ND	0.010			
45. 5-Chloro-2-methoxyaniline	ND	ND	ND	0.005			
46. 2,5-Dichloraniline	ND	ND	ND	0.010			
47. 2-Chloro-4-nitroaniline	ND	ND	ND	0.005			
48. 4-Chloro-2,5-dimethoxyaniline	ND	ND	ND	0.005			
49. 2,4,5-Trichloroaniline	ND	ND	ND	0.010			
50. 4-Chloro-3-methoxyaniline	ND	ND	ND	0.005			
51. 2,4-Dinitroaniline	ND	ND	ND	0.005			
52. 4-Aminotoluene-3-sulfonic acid	ND	ND	ND	0.005			
53. 2-Amino-1-naphthalenesulfonic acid	ND	ND	ND	0.005			
54. Dimethyl aminoterephthalate	ND	ND	ND	0.002			
55. p-Anisidine	ND	ND	ND	0.002			
56. 3,4-Dichloroaniline	ND	ND	ND	0.002			
57. 1-Naphthylamine	ND	ND	ND	0.002			
58. 2-Aminobiphenyl	ND	ND	ND	0.002			
59. Butyl Anthranilate	ND	ND	ND	0.002			
60. 2,4-Diaminodiphenylmethane	ND	ND	ND	0.002			
61. 2-Amino-5-methylbenzoic acid	ND	ND	ND	0.002			
Sum of Total	ND	ND	ND	--	0.01		
Stability+	--	--	Yes				
Overall Comment	--	--	PASS	--	--		

Note

1. mg/kg ; milligram per kilogram of foodstuff in contact with

Shark NINJA

	2. "C ; degree Celsius 3. NO ; Not Detected (< Reporting limit)													
Nylon - Specific migration of Caprolactam Method: With reference to EN 13130-1 :2004. Analysis was performed by GC-MS. Simulant Used: 3% acetic acid (w/v) in aqueous solution Test Condition: 40°C for 2 hours	<table border="1"><thead><tr><th rowspan="2">Test Item</th><th>Result (mg/kg)</th><th rowspan="2">Reporting Limit (mg/kg)</th><th rowspan="2">Permissible Limit (mg/kg)</th></tr><tr><th>1</th></tr></thead><tbody><tr><td>Specific migration of Caprolactam</td><td>ND</td><td>5</td><td>15</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note : 1. mg/kg = milligram per kilogram of foodstuff in contact with 2. C = degree Celsius 3. ND = Not Detected</p>	Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	1	Specific migration of Caprolactam	ND	5	15	Comment	PASS	--	--
Test Item	Result (mg/kg)		Reporting Limit (mg/kg)			Permissible Limit (mg/kg)								
	1													
Specific migration of Caprolactam	ND	5	15											
Comment	PASS	--	--											
Lab Reference	SGS HKTEC2100924302													

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Ineos Styrolution C552485 [SAN] natural																				
SharkNinja Models:	BLxxx, BNxxx																				
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																				
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 11 86-3:2002 aqueous food simulants by total immersion method; EN 11 86-14 :2002 substitute test.	<table border="1"><thead><tr><th>Simulant Used</th><th>Test Condition</th><th>Result (mg/dm²)</th><th>Reporting Limit (mg/dm²)</th><th>Permissible Limit (mg/dm²)</th></tr></thead><tbody><tr><td>Rectified Olive Oil</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Comment</td><td>--</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note : 1. mg/dm² = milligram per square decimeter 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.</p>					Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)	Rectified Olive Oil	2 hours at 70°C	ND	3.0	10	Comment	--	PASS	--	--	
Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																	
Rectified Olive Oil	2 hours at 70°C	ND	3.0	10																	
Comment	--	PASS	--	--																	
SAN - Specific migration of Acrylonitrile Method: With reference to EN 13130-1:2004. Analysis was performed by SPME-GC-MS. Simulant Used: 3% acetic acid (WN) in aqueous solution Test Condition: 40°C for 2 hours (1" Migration)	<table border="1"><thead><tr><th>Test Item</th><th>Result (mg/kg)</th><th>Reporting Limit (mg/kg)</th><th>Permissible Limit (mg/kg)</th></tr></thead><tbody><tr><td></td><td>1</td><td></td><td></td></tr><tr><td>Specific migration of Acrylonitrile</td><td>ND</td><td>0.01</td><td>0.01</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.</p>					Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)		1			Specific migration of Acrylonitrile	ND	0.01	0.01	Comment	PASS	--	--
Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																		
	1																				
Specific migration of Acrylonitrile	ND	0.01	0.01																		
Comment	PASS	--	--																		

CE

Shark | NINJA

Types of Food Contact	Fatty foods, Alcoholic foods, Acidic foods, Aqueous foods
Lab Reference	SGS HKGEC2000292703

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.

Shark NINJA

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	LG Chemical HI121H [ABS], Black																																												
SharkNinja Models:	BL4**XX***, BL5**XX***																																												
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																												
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 11 86-3:2002 aqueous food simulants by total immersion method; EN 11 86-14 :2002 substitute test.	<table border="1"><thead><tr><th>Simulant Used</th><th>Test Condition</th><th>Result (mg/dm²)</th><th>Reporting Limit (mg/dm²)</th><th>Permissible Limit (mg/dm²)</th></tr><tr><th></th><th></th><th>1</th><th></th><th></th></tr></thead><tbody><tr><td>10% Ethanol (V/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>3% Acetic Acid (W/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Fatty food substitute</td><td></td><td></td><td></td><td></td></tr><tr><td>95% Ethanol</td><td>2 hours at 60°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Isooctane</td><td>0.5 hour at 40°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Comment</td><td>--</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note : 1. mg/dm² = milligram per square decimeter 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.</p>					Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)			1			10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	Fatty food substitute					95% Ethanol	2 hours at 60°C	ND	3.0	10	Isooctane	0.5 hour at 40°C	ND	3.0	10	Comment	--	PASS	--	--
Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																									
		1																																											
10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																									
3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																									
Fatty food substitute																																													
95% Ethanol	2 hours at 60°C	ND	3.0	10																																									
Isooctane	0.5 hour at 40°C	ND	3.0	10																																									
Comment	--	PASS	--	--																																									
Plastic-Migration of Heavy Metals Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40'C for 2 hours	<table border="1"><thead><tr><th>Test Item</th><th>Result (mg/kg)</th><th>Reporting Limit (mg/kg)</th><th>Permissible Limit (mg/kg)</th></tr><tr><th></th><th>1</th><th></th><th></th></tr></thead><tbody><tr><td>Specific Migration of Barium</td><td>ND</td><td>0.25</td><td>1</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>0.01</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>0.25</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>0.25</td><td>48</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>0.5</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>0.25</td><td>0.6</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>0.5</td><td>25</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.</p>					Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)		1			Specific Migration of Barium	ND	0.25	1	Specific Migration of Cobalt	ND	0.01	0.05	Specific Migration of Copper	ND	0.25	5	Specific Migration of Iron	ND	0.25	48	Specific Migration of Lithium	ND	0.5	0.6	Specific Migration of Manganese	ND	0.25	0.6	Specific Migration of Zinc	ND	0.5	25	Comment	PASS	--	--
Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																										
	1																																												
Specific Migration of Barium	ND	0.25	1																																										
Specific Migration of Cobalt	ND	0.01	0.05																																										
Specific Migration of Copper	ND	0.25	5																																										
Specific Migration of Iron	ND	0.25	48																																										
Specific Migration of Lithium	ND	0.5	0.6																																										
Specific Migration of Manganese	ND	0.25	0.6																																										
Specific Migration of Zinc	ND	0.5	25																																										
Comment	PASS	--	--																																										

Shark NINJA

ABS- Specific migration of Acrylonitrile

Method: With reference to EN 13130-1:2004. Analysis was performed by SPME-GC-MS.

Simulant Used: 3% acetic acid (WN) in aqueous solution

Test Condition: 40°C for 2 hours (1" Migration)

Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)
Specific migration of Acrylonitrile	1	0.01	0.01
Comment	PASS	-	--

Note:

1. mg/kg = milligram per kilogram of foodstuff in contact with
2. °C = degree Celsius
3. ND = Not Detected
4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.

Types of Food Contact

Fatty foods, Alcoholic foods, Acidic foods, Aqueous foods

Lab Reference

SGS HKGEC1501040307

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	LG Chemical GP-2300 [PP] 30% GF, Black																																								
SharkNinja Models:	BLxxx, BNxxx																																								
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																								
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods: EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-2:2002 olive oil by total immersion method;	<table border="1"><thead><tr><th>Simulant Used</th><th>Test Condition</th><th>Result (mg/dm²)</th><th>Reporting Limit (mg/dm²)</th><th>Permissible Limit (mg/dm²)</th></tr></thead><tbody><tr><td>10% Ethanol (V/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>3% Acetic Acid (W/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Rectified Olive Oil</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Comment</td><td>--</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note : 1. mg/dm² = milligram per square decimeter 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.</p>					Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)	10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	Rectified Olive Oil	2 hours at 70°C	ND	3.0	10	Comment	--	PASS	--	--											
Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																					
10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																					
3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																					
Rectified Olive Oil	2 hours at 70°C	ND	3.0	10																																					
Comment	--	PASS	--	--																																					
Plastic-Migration of Heavy Metals Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40°C for 2 hours	<table border="1"><thead><tr><th>Test Item</th><th>Result (mg/kg)</th><th>Reporting Limit (mg/kg)</th><th>Permissible Limit (mg/kg)</th></tr></thead><tbody><tr><td>Specific Migration of Barium</td><td>ND</td><td>0.25</td><td>1</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>0.01</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>0.25</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>0.25</td><td>48</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>0.5</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>0.25</td><td>0.6</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>0.5</td><td>25</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table> <p>Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.</p>					Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	Specific Migration of Barium	ND	0.25	1	Specific Migration of Cobalt	ND	0.01	0.05	Specific Migration of Copper	ND	0.25	5	Specific Migration of Iron	ND	0.25	48	Specific Migration of Lithium	ND	0.5	0.6	Specific Migration of Manganese	ND	0.25	0.6	Specific Migration of Zinc	ND	0.5	25	Comment	PASS	--	--
Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																						
Specific Migration of Barium	ND	0.25	1																																						
Specific Migration of Cobalt	ND	0.01	0.05																																						
Specific Migration of Copper	ND	0.25	5																																						
Specific Migration of Iron	ND	0.25	48																																						
Specific Migration of Lithium	ND	0.5	0.6																																						
Specific Migration of Manganese	ND	0.25	0.6																																						
Specific Migration of Zinc	ND	0.5	25																																						
Comment	PASS	--	--																																						
Lab Reference	SGS HKG1501040313																																								

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Lotte Chemical J-150 [PP], Black																																							
SharkNinja Models:	BL6***XX***																																							
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011																																							
Plastic-Overall Migration	<table border="1"><thead><tr><th>Simulant Used</th><th>Test Condition</th><th>Result (mg/dm²)</th><th>Reporting Limit (mg/dm²)</th><th>Permissible Limit (mg/dm²)</th></tr></thead><tbody><tr><td>10% Ethanol (V/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>3% Acetic Acid (W/V) Aqueous Solution</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Rectified Olive Oil</td><td>2 hours at 70°C</td><td>ND</td><td>3.0</td><td>10</td></tr><tr><td>Comment</td><td>--</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table>				Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)	10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10	Rectified Olive Oil	2 hours at 70°C	ND	3.0	10	Comment	--	PASS	--	--											
Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)																																				
10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																				
3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10																																				
Rectified Olive Oil	2 hours at 70°C	ND	3.0	10																																				
Comment	--	PASS	--	--																																				
Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods: EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-2:2002 olive oil by total immersion method;	<p>Note :</p> <ol style="list-style-type: none">1. mg/dm² = milligram per square decimeter2. 'C = degree Celsius3. ND = Not Detected4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.																																							
Plastic-Migration of Heavy Metals	<table border="1"><thead><tr><th>Test Item</th><th>Result (mg/kg)</th><th>Reporting Limit (mg/kg)</th><th>Permissible Limit (mg/kg)</th></tr></thead><tbody><tr><td>Specific Migration of Barium</td><td>ND</td><td>0.25</td><td>1</td></tr><tr><td>Specific Migration of Cobalt</td><td>ND</td><td>0.01</td><td>0.05</td></tr><tr><td>Specific Migration of Copper</td><td>ND</td><td>0.25</td><td>5</td></tr><tr><td>Specific Migration of Iron</td><td>ND</td><td>0.25</td><td>48</td></tr><tr><td>Specific Migration of Lithium</td><td>ND</td><td>0.5</td><td>0.6</td></tr><tr><td>Specific Migration of Manganese</td><td>ND</td><td>0.25</td><td>0.6</td></tr><tr><td>Specific Migration of Zinc</td><td>ND</td><td>0.5</td><td>25</td></tr><tr><td>Comment</td><td>PASS</td><td>--</td><td>--</td></tr></tbody></table>				Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	Specific Migration of Barium	ND	0.25	1	Specific Migration of Cobalt	ND	0.01	0.05	Specific Migration of Copper	ND	0.25	5	Specific Migration of Iron	ND	0.25	48	Specific Migration of Lithium	ND	0.5	0.6	Specific Migration of Manganese	ND	0.25	0.6	Specific Migration of Zinc	ND	0.5	25	Comment	PASS	--	--
Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)																																					
Specific Migration of Barium	ND	0.25	1																																					
Specific Migration of Cobalt	ND	0.01	0.05																																					
Specific Migration of Copper	ND	0.25	5																																					
Specific Migration of Iron	ND	0.25	48																																					
Specific Migration of Lithium	ND	0.5	0.6																																					
Specific Migration of Manganese	ND	0.25	0.6																																					
Specific Migration of Zinc	ND	0.5	25																																					
Comment	PASS	--	--																																					
Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES.	<p>Simulant Used: 3% acetic acid (W/V) in aqueous solution</p> <p>Test Condition: 40°C for 2 hours</p> <p>Note:</p> <ol style="list-style-type: none">1. mg/kg= milligram per kilogram of foodstuff in contact with2. 'C = degree Celsius3. ND = Not Detected4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.																																							
Lab Reference	SGS HKG1600754402																																							

Shark NINJA

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Polyplastics Co LTD M90-44 [POM], Black				
SharkNinja Models:	BL4xx, BL5xx, BNxx				
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011				
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 11 86-3:2002 aqueous food simulants by total immersion method; EN 11 86-14 :2002 substitute test.	Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)
	10% Ethanol (V/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10
	3% Acetic Acid (W/V) Aqueous Solution	2 hours at 70°C	ND	3.0	10
	Fatty food substitute				
	95% Ethanol	2 hours at 60°C	ND	3.0	10
	Isooctane	0.5 hour at 40°C	ND	3.0	10
	Comment	--	PASS	--	--
<p>Note :</p> <ol style="list-style-type: none">1. mg/dm² = milligram per square decimeter2. 'C = degree Celsius3. ND = Not Detected4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.					
Plastic-Migration of Heavy Metals Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40'C for 2 hours	Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	
	Specific Migration of Barium	ND	0.25	1	
	Specific Migration of Cobalt	ND	0.01	0.05	
	Specific Migration of Copper	ND	0.25	5	
	Specific Migration of Iron	ND	0.25	48	
	Specific Migration of Lithium	ND	0.5	0.6	
	Specific Migration of Manganese	ND	0.25	0.6	
	Specific Migration of Zinc	ND	0.5	25	
<p>Comment</p> <p>Note:</p> <ol style="list-style-type: none">1. mg/kg= milligram per kilogram of foodstuff in contact with2. 'C = degree Celsius3. ND = Not Detected4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.					

Shark | NINJA

ABS- Specific migration of Acrylonitrile

Method: With reference to EN 13130-1:2004. Analysis was performed by SPME-GC-MS.

Simulant Used: 3% acetic acid (WN) in aqueous solution

Test Condition: 40°C for 2 hours (1" Migration)

Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)
Specific migration of Acrylonitrile	1	0.01	0.01
Comment	PASS	-	--

Note:

1. mg/kg = milligram per kilogram of foodstuff in contact with
2. °C = degree Celsius
3. ND = Not Detected
4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.

Types of Food Contact

Fatty foods, Alcoholic foods, Acidic foods, Aqueous foods

Lab Reference

SGS HKGEC1501040307

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Solvay Engineering Plastics C216 V30 [PA] 30% GF, Black				
SharkNinja Models:	BL6***XX***				
Testing Protocol	Testing as per Commission Regulation (EU) No 10/2011				
Plastic-Overall Migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods; EN 11 86-3:2002 aqueous food simulants by total immersion method; EN 11 86-14 :2002 substitute test.	Simulant Used	Test Condition	Result (mg/dm ²)	Reporting Limit (mg/dm ²)	Permissible Limit (mg/dm ²)
10% Ethanol (V/V) Aqueous Solution 3% Acetic Acid (W/V) Aqueous Solution Fatty food substitute 95% Ethanol Isooctane		1	3.5	3.0	10
		2 hours at 70°C	ND	3.0	10
		2 hours at 60°C	3.4	3.0	10
		0.5 hour at 40°C	ND	3.0	10
	Comment	--	PASS	--	--
Note : 1. mg/dm ² = milligram per square decimeter 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No. 10/2011 of 14 January 2011 with amendments.					
Plastic-Migration of Heavy Metals Method: With reference to EN 13130-1:2004. Analysis was performed by ICP-OES. Simulant Used: 3% acetic acid (W/V) in aqueous solution Test Condition: 40'C for 2 hours	Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)	
Specific Migration of Barium Specific Migration of Cobalt Specific Migration of Copper Specific Migration of Iron Specific Migration of Lithium Specific Migration of Manganese Specific Migration of Zinc	1	0.25	1		
	ND	0.01	0.05		
	ND	0.25	5		
	ND	0.26	48		
	ND	0.5	0.6		
	ND	0.25	0.6		
	ND	0.5	25		
Comment Note: 1. mg/kg= milligram per kilogram of foodstuff in contact with 2. 'C = degree Celsius 3. ND = Not Detected 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.					

Nylon - Specific migration of Primary Aromatic Amine

Method: With reference to EN13130-1 :2004 and EU JRC guideline EUR 24815 EN 2011. Analysis was performed by LC-MSMS. Simulant Used: 3% acetic acid (w/v) in aqueous solution Test Condition: 40C for 2 hours (1st Migration).

Test Item	Result (mg/kg)	Detection Limit (mg/kg)	Permissible Limit (mg/kg)
	1		
2,4,5-Trimethylaniline (2,4,5-TMA)	ND	0.002	--
2,4-Dimethylaniline (2,4-DMA)	ND	0.002	--
2,4-Toluenediamine (2,4-TDA)	ND	0.002	--
2,6-Dimethylaniline (2,6-DMA)	ND	0.002	--
2,6-Toluenediamine (2,6-TDA)	ND	0.002	--
2-Methoxy-5-Methylaniline (2-M-5-MA)	ND	0.002	--
3,3-Dimethylbenzidine (3,3-DMB)	ND	0.002	--
4,4-Diaminodiphenylether (4,4-DPE)	ND	0.002	--
4,4'-Methylenedianiline (4,4-MDA)	ND	0.002	--
4,4-Methylenedi-o-toluidine (4,4-MDoT)	ND	0.002	--
4-Aminobiphenyl (4-ABP)	ND	0.002	--
4-Chloro-Aniline (4-CA)	ND	0.002	--
4-Chloro-o-Toluidine (4-CoT)	ND	0.002	--
Aniline (ANL)	ND	0.002	--
4-Methoxy-mphenylenediamine (4-M-mPDA)	ND	0.002	--
Benzidine (BNZ)	ND	0.002	--
m-Phenylenediamine (m-PDA)	ND	0.002	--
o-Anisidine (o-ASD)	ND	0.002	--
o-Toluidine (O-T)	ND	0.002	--
p-Phenylenediamine (p-PDA)	ND	0.002	--
Total	ND	--	0.01
Comment	PASS	--	--

Note : 1. mg/kg = milligram per kilogram of foodstuff in contact with
 2. <C = degree Celsius
 3. NID = Not Detected
 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.

Nylon - Specific migration of Caprolactam

Method: With reference to EN 13130-1 :2004. Analysis was performed by GC-MS. Simulant Used: 3% acetic acid (w/v) in aqueous solution Test Condition: 40<C for 2 hours

Test Item	Result (mg/kg)	Reporting Limit (mg/kg)	Permissible Limit (mg/kg)
	1		
Specific migration of Caprolactam	ND	5	15
Comment	PASS	--	--

Note : 1. mg/kg = milligram per kilogram of foodstuff in contact with
 2. <C = degree Celsius
 3. NID = Not Detected
 4. Permissible Limit is according to Commission Regulation (EU) No 10/2011 of 14 January 2011 with amendments.

Lab Reference

SGS HKGEC16000783414

Shark NINJA

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Yixin Silicone NCR9 [SIL], Black																																		
SharkNinja Models:	BLxxx, BNxxx																																		
Testing Protocol	Council of Europe Resolution AP (2004) 5																																		
Silicone Rubber - Overall migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods: EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-2:2002 olive oil by total immersion method.	<p>Simulant Used : Rectified Olive Oil Test Condition : 70 °C 2.0 hr(s)</p> <table><thead><tr><th><u>Test Item(s)</u></th><th><u>Max. Permissible Limit</u></th><th><u>Unit</u></th><th><u>MDL</u></th><th><u>Test result</u></th></tr></thead><tbody><tr><td>First Migration</td><td>-</td><td>mg/dm²</td><td>3.0</td><td>11.8</td></tr><tr><td>Second Migration</td><td>-</td><td>mg/dm²</td><td>3.0</td><td>7.7</td></tr><tr><td>Third Migration</td><td>10.0</td><td>mg/dm²</td><td>3.0</td><td><3.0</td></tr><tr><td>Stability</td><td></td><td></td><td></td><td>YES</td></tr><tr><td>Comment</td><td></td><td></td><td></td><td>PASS</td></tr></tbody></table> <p>Notes: 1. mg/dm² = milligram per square decimeter mg/kg = milligram per kilogram of foodstuff in contact with 2. °C = degree Celsius 3. Analytical tolerance of aqueous simulants is 2mg/dm² or 12mg/kg 4. Analytical tolerance of/atty food simulants is 3mg/dm² or 20mg/kg 5. The compliance rule is based on the requirement of (EU) 2020/1245.)</p>					<u>Test Item(s)</u>	<u>Max. Permissible Limit</u>	<u>Unit</u>	<u>MDL</u>	<u>Test result</u>	First Migration	-	mg/dm ²	3.0	11.8	Second Migration	-	mg/dm ²	3.0	7.7	Third Migration	10.0	mg/dm ²	3.0	<3.0	Stability				YES	Comment				PASS
<u>Test Item(s)</u>	<u>Max. Permissible Limit</u>	<u>Unit</u>	<u>MDL</u>	<u>Test result</u>																															
First Migration	-	mg/dm ²	3.0	11.8																															
Second Migration	-	mg/dm ²	3.0	7.7																															
Third Migration	10.0	mg/dm ²	3.0	<3.0																															
Stability				YES																															
Comment				PASS																															
Types of Food Contact	Fatty foods, Alcoholic foods, Acidic foods, Aqueous foods																																		
Lab Reference	SGS CANEC2115075701																																		

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.

Shark NINJA

EU DECLARATION OF CONFORMITY

Addendum: *Declaration of Compliance FC Plastics*

Material Covered	Yixin Silicone TY171 [SIL], Natural							
SharkNinja Models:	BLxx, BL5xx, BNxx							
Testing Protocol	Council of Europe Resolution AP (2004) 5							
Silicone Rubber - Overall migration Method: With reference to Commission Regulation (EU) No 10/2011 of 14 January 2011 Annex III and Annex V for selection of condition and EN 1186-1 :2002 for selection of test methods: EN 1186-3:2002 aqueous food simulants by total immersion method; EN 1186-2:2002 olive oil by total immersion method.	Simulant Used	Test Condition	Result (mg/dm ²)			Reporting Limit (mg/dm ²)		
Rectified Olive Oil	2 hours at 70°C		1			Permissible Limit (mg/dm ²)		
			1 st migration	2 nd migration	3 rd migration			
			12.5	12.1	7.1	3.0		
			Yes	--	--	10		
Overall Comment								
Notes: 1. mg/dm ² = milligram per square decimeter mg/kg = milligram per kilogram of foodstuff in contact with 2. °C = degree Celsius 3. Analytical tolerance of aqueous simulants is 2mg/dm ² or 12mg/kg 4. Analytical tolerance of fatty food simulants is 3mg/dm ² or 20mg/kg 5. The compliance rule is based on the requirement of (EU) 2020/1245.)								
Types of Food Contact	Fatty foods, Alcoholic foods, Acidic foods, Aqueous foods							
Lab Reference	SGS HKTEC2103719605							

The above declaration of compliance for food contact plastics is only valid if the product is assembled and operated per the instruction defined in the product information supplied.